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Fast Global Kernel Density Mode Seeking:
Applications to Localization and Tracking
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Abstract—Tracking objects in video using the mean shift (MS)
technique has been the subject of considerable attention. In this
work, we aim to remedy one of its shortcomings. MS, like other
gradient ascent optimization methods, is designed to find local
modes. In many situations, however, we seek the global mode
of a density function. The standard MS tracker assumes that
the initialization point falls within the basin of attraction of the
desired mode. When tracking objects in video this assumption
may not hold, particularly when the target’s displacement be-
tween successive frames is large. In this case, the local and global
modes do not correspond and the tracker is likely to fail. A novel
multibandwidth MS procedure is proposed which converges to the
global mode of the density function, regardless of the initialization
point. We term the procedure annealed MS, as it shares simi-
larities with the annealed importance sampling procedure. The
bandwidth of the procedure plays the same role as the temperature
in conventional annealing. We observe that an over-smoothed
density function with a sufficiently large bandwidth is unimodal.
Using a continuation principle, the influence of the global peak
in the density function is introduced gradually. In this way, the
global maximum is more reliably located. Since it is imperative
that the computational complexity is minimal for real-time appli-
cations, such as visual tracking, we also propose an accelerated
version of the algorithm. This significantly decreases the number
of iterations required to achieve convergence. We show on various
data sets that the proposed algorithm offers considerable promise
in reliably and rapidly finding the true object location when
initialized from a distant point.

Index Terms—Annealing, fast mean shift (MS), global density
mode, visual localization, visual tracking.

1. INTRODUCTION AND MOTIVATION

ERNEL-BASED density estimation techniques for com-
Kputer vision have attracted a great deal of attention. One
example is the mean shift (MS) technique which has been ap-
plied to image segmentation, visual tracking, etc. [1]-[7]. MS
is a versatile nonparametric density analysis tool introduced in
[8]-[10]. In essence, it is an iterative mode detection algorithm
in the density distribution space. The MS algorithm moves to a
kernel-weighted average of the observations within a smoothing
window. This computation is repeated until convergence is at-
tained at a local density mode. This way the density modes can
be elegantly located without explicitly estimating the density.
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Cheng [9] notes that MS is fundamentally a gradient ascent
algorithm with an adaptive step size. Fashing and Tomasi [11]
show the connection between MS and the Newton—-Raphson
algorithm. They also discover that MS is actually a quadratic
bound optimization both for stationary and evolving sample
sets. MS is also a fixed-point iteration procedure.

Since Comaniciu et al. [2] first introduced MS-based object
tracking, it has proven to be a promising alternative to popular
particle filtering based trackers [12], [13]. A number of improve-
ments to the method have been reported in the literature. In [3],
the selection of kernel scale via linear search is discussed. El-
gammal et al. [4] reformulate the tracking framework as a gen-
eral form of joint feature-spatial distributions [7]. Compared
with the approach of Comaniciu et al., the advantage is that spa-
tial structure information of the tracked region is incorporated.

In [5], multiple spatially distributed kernels are adopted to
accurately capture changes in the target’s orientation and scale.
Another approach is developed in [14] for the same purpose.
Furthermore, Fan et al. [15] present a theoretical analysis of the
similarity measure and arrive at a criterion, leading to kernel
design strategies with prevention of singularity in kernel visual
tracking. All the above mentioned trackers adopt MS or sim-
ilar optimization strategies. Despite successful applications, MS
trackers require that the displacement of the tracked target in
consecutive frames is small as the search is initialized by the de-
tected location of the target in the previous frame. Larger inter-
frame displacements will lead the tracker to become trapped in
spurious locations in the multimodal density distribution space!
because MS is a local optimization method.

Fundamentally, MS has two important inherent drawbacks: 1)
the fact that it is designed to find local rather than global modes
and 2) its speed. Simulated annealing is often employed to at-
tain global, rather than local, optimization—initially sampling
with a reduced sensitivity to the underlying modes (on the flat-
tened cost function surface) and then progressively increasing
the sensitivity to drive samples on peaked cost regions [17]. Re-
cently, the idea of annealing has been merged into importance
sampling yielding annealed importance sampling [18], and it
has also been introduced into 3-D articulated tracking [19].

Motivated by the success of both simulated annealing and
annealed importance sampling, we propose a novel multiband-
width MS procedure, termed annealed MS. It shares similari-
ties with the annealed importance sampling procedure in the
sense that it also gradually smooths the cost function surface and
gently introduces the influence of the global peak. We observe
that an over-smoothed density function with a sufficiently large

ITn contrast, particle filtering-based trackers (e.g., [16]) perform better in this
situation. However, weak dynamical modeling also presents challenges to par-
ticle filters.
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bandwidth? hj; is uni-modal. Then, with a continuation prin-
ciple, we slowly decrease the bandwidth h = hps > hpr—q >

- > hg and, at each bandwidth, we maximize the density
(cost) function with MS, starting from the convergence position
of the previous run. This multibandwidth MS iteration process
is similar to the multilayered annealing procedure of annealed
importance sampling. The main differences are as follows. 1) In
annealed MS, it is the degree of smoothness of the cost func-
tion that is annealed, while in annealed importance sampling,
it is the degree of flatness of the cost function. 2) Most impor-
tantly, in annealed MS, the number and positions of the modes
are evolved slowly while in the annealed importance sampling,
the temperature does not change the number of modes or their
positions. In theory, as long as the change of bandwidth is suf-
ficiently slow, the global maximum can be found successfully.3
We provide technical details later.

The second drawback of MS is that it often converges slowly.
In some cases, the proposed annealed MS might require more
iterations than the standard version of the algorithm. This is
particularly the case when applied to the localization problem
which involves finding the target in an image with no prior
knowledge of its location. Clearly, it is imperative that the com-
putation complexity is minimal in real-time applications such
as visual tracking. To the best of our knowledge, few attempts
have been made to speed up the convergence of MS. In [1], lo-
cality sensitive hashing (LSH) is used to reduce the computa-
tional complexity of finding the nearest neighbors of a sample
point involved in MS. The kd-tree can also be used to reduce
the large number of nearest-neighbor queries [21]. Although a
dramatic decrease in the execution time is achieved for high-di-
mensional clustering, these techniques are not that attractive for
relatively low-dimensional problems such as visual tracking.
Zhang et al. [22] partition the feature space into several clus-
ters and the samples of each cluster are treated as a whole in
describing the density distribution. MS iteration is then approx-
imated by evaluating kernels only on the cluster centers. The
acceleration of all these approaches is not obtained by reducing
the number of iteration steps. Yang et al. [23] use quasi-Newton
methods to perform gradient hill climbing, in which the conver-
gence rate is super-linear. Unfortunately, Newton methods can
overshoot and break the convergence [11]. A line search might
be employed to determine the search direction in each iteration,
which will introduce extra computation.

In this paper, we prefer an accelerated version of the MS
algorithm. Compared with the conventional MS algorithm, it
can significantly decrease the number of iterations required for
convergence. The accelerated MS is inspired by the successful
accelerated variants of bound optimization algorithms such
as expectation maximization (EM). An over-relaxed strategy
is adopted to accelerate convergence. Much effort has been
expended to improve the efficiency of bound optimization
algorithms (e.g., EM, [24]-[26]). A theoretical analysis of the
convergence properties for a class of bound optimization algo-

2By a sufficiently large bandwidth, we mean a bandwidth which is much
larger than the optimal bandwidth with the minimum asymptotic mean inte-
grated square error (AMISE). AMISE is a measure of distance between two
densities for understanding the performance of a kernel density estimator [20].

3For continuous variables, the assertion of success is probabilistic.
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rithms has been given in [26] and is used as the basis for a novel
adaptive over-relaxed scheme. Our proposal is inspired by
this approach. Based on the findings in [11], which bridge the
gap between MS and general bound optimization algorithms,
we promote an adaptive over-relaxed MS algorithm which is
simple to implement yet significantly more efficient than the
standard counterpart.

Applications of the proposed fast, globally mode-seeking MS
are given in the form of an annealed MS-based object localizer
and a visual tracker. Substantially more promising results have
been achieved over the conventional MS-based algorithms. The
work described here extends our previous efforts published in
short form in [27]. In summary, our key contributions comprise
the following.

1) The development of a novel annealed MS algorithm which
can more reliably find the global mode of a density distri-
bution. This is introduced in Section III.

2) The reinterpretation of the MS algorithm, leading to an
accelerated version of MS, attaining considerable speedup.
We discuss these issues in Section IV.

3) The application of annealed MS to the problem of visual
tracking using kernel-weighted color histogram features.
Given a target model, the tracker is able to initialize
automatically. It also has the capability to recover from
tracking failures caused by occlusions or drastic illu-
mination changes, in that the tracker itself can also be
a localizer. In contrast, conventional MS trackers lack
these desirable properties. These developments, including
experimental results, are presented in Section V-B and C.

The remaining contents start with a brief review of the stan-
dard MS algorithm for completeness in Section II. We conclude
the paper in Section VI with a discussion of some important is-
sues.

II. MEAN SHIFT ANALYSIS

We first review the basic concepts of the MS algorithm using
the notation similar to [10]. One of the most popular nonpara-
metric density estimators is kernel density estimation. Given n
data points x;,7 = 1, ..., n, drawn from a population with den-
sity function f(x),x € R?, the general multivariate kernel den-
sity estimate at x is defined by

i) = =3 Kualx - x,) m
=1

where Kyi(x) = |[H|"V/2DKMH~1/2x). Here, K(-) is a
kernel function (or window) with a symmetric positive definite
bandwidth matrix H € R?*<, A kernel function is bounded with
support satisfying the regularity constraints as described in [9],
[10]. For simplicity, one usually assumes an isotropic bandwidth
which is proportional to the identity matrix, i.e., H = h%I. Em-
ploying the profile definition, the kernel density estimator be-

comes
e n 2
= 2
’I’Lhd =1 : < ) ( )

fr(x) =
where k(- ) is the profile of the kernel K ( - ) and ¢, [also ¢4 in
(3)] is a normalization constant. The optimization procedure of

X —X;
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seeking the local modes is solved by setting the gradient equal
to zero. Thus, we have

Vf(x) = Vr(x) = ,fQ—‘;’;fG(w me(x) =0 (3
where

Jo(x) = =5 > = @)

o) = S P=1)

Sico (I1=21F)

and g(z) = —k'(z). Here, k( - ) is called the shadow of the pro-
file g( - ) [11],and m(x) is the MS vector. Clearly, V fx (x) =
0 implies mg(x) = 0, and the incremental iteration scheme is
obtained immediately*

)

2?21 Xig (H x—hxz'
- 112
S (1))

III. ANNEALED MS

Let hy(m = M,M — 1,...,0) be a monotonically
decreasing sequence of bandwidths such that hg is the
optimal bandwidth for the considered data set and usu-
ally har > ho5 A series of kernel density functions
.th,K( ) )7 .th—lyK( ) )7 RN} .fho,K( ) ) are apphed to the
sample data, where the subscripts of fh7 k(+) denote the band-
width and kernel type, respectively.

Fig. 1 illustrates a 1-D exar{lple,6 where M = 6. With a
large bandwidth, the function f,, x(-) is uni-modal, merely
representing the overall trend of the density function. Thus, the
starting point of the first annealing run does not affect the mode
detection. This is guaranteed by the following theorem.

Theorem 3.1 [Hall et al. [30]]: If the kernel K(-) in (1) is
compactly supported and strictly uni-modal, and is concave in
a neighborhood of its mode, and if the data x are drawn from
a continuous distribution, then with probability 1, there exists
a bandwidth hj,; such that fh WK 18 strictly uni-modal for all
h > hj; (our notation is used here).

Refer to [30] for the proof. When the kernel is Gaussian, it
is well known that the number of modes of f is monotonically
nonincreasing in the bandwidth.

The basic annealed MS algorithm is shown in Fig. 2.

A. Remarks

The annealing schedule is a tradeoff between efficiency and
efficacy: Slow annealing is more likely to find a global max-
imum but could also be prohibitively expensive.

4Refer to [9] and [10] for the convergence proof.

S5There is a tremendous amount of literature on how to select the optimal band-
width in order to produce a minimum AMISE estimate (see, e.g., [28] and [29]).
In this work, we assume h, can be obtained by existing techniques.

6The 1-D galaxy velocity data set is also used in [11].
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Gaussian kemel, bandwidth:3800,3200,2600,2000,1300,800,450.

09| Y\
7\
08} \
07} )
06
05}
04t /] X

03

Density estimate (arbitrary units)

o2r // ~\

01t/ /

0 2000 4000 6000 8000
X

Gaussian kemnel, bandwidth:450 (hO)

10000

09 + [ B
08}
07}
06 |
ost | YA N\

o4 | Ny
oal | 3

Density estimate (arbitrary units)

o2t | ~
o1t /

0 2000 4000 6000 8000
X

10000

Fig. 1. Multibandwidth density estimate on 1-D galaxy velocity data.
(Top) Curves from top to bottom indicate the annealing process with succes-
sively decreasing bandwidths. In this case, the optimal bandwidth is hy = 450.
The evolution of the modes is clearly shown: With a multibandwidth MS mode
detection, it is possible to find the global maximum without being distracted by
local modes. (Bottom) Convergence positions at each bandwidth are marked
with circles in the last curve. Note that the unit of the vertical axis is arbitrary.

1) Determine the set of values for h,,(m = M---0)
(a.k.a. the annealing schedule).

2) Randomly select an initial starting location for the
first annealing run and get the convergence location of
fhaex(+), which is M) using mean shift.

3) Foreachm = M—1, M —2,- .. ,0, run mean shift to get
the convergence position (™) with the initial position
R(m+1) e, the convergence position from the previous
bandwidth. X(%) is then the final global mode.

Fig. 2. Annealed MS algorithm.

Annealed MS works well because the number of modes of a
kernel estimator with a Gaussian kernel is monotonically nonin-
creasing. Annealed MS utilizes this property. A precondition of
the success of the Annealed MS hierarchical search is the mono-
tonicity of number of modes with respect to bandwidths. Note
that if a non-Gaussian kernel is adopted, e.g., Epanechnikov
kernel, the monotonicity property does not apply because com-
pactly supported kernels may not have this property. However,
as pointed out in [30], the lack of monotonicity typically occurs
only for relatively small bandwidths. The notion of a critical
bandwidth? for the popular kernels such as the Epanechnikov
kernel is still well defined. Moreover, “just as in the Gaussian
case, the critical bandwidth is of the same size as the bandwidth
(ho) that minimizes mean square error of the density estimator”
[30]. This conclusion serves as one of the theoretical bases of

7The smallest bandwidth above which the number of modes is monotone.
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Annealed MS: We are not interested in the bandwidth under h.
Rather, we take advantage of the property of over-smoothness at
bandwidths above h. Therefore, for the applications that we are
interested in, e.g., visual localization and tracking, the problem
of nonmonotonicity does not arise.

Unless otherwise specified, in our examples the (truncated)
Gaussian kernel is used as it leads to fast computation. There
are two reasons. 1) As we will see in Section IV, a Gaussian
kernel is preferred for our fast MS. 2) Fast Gauss transform
[31] can also be adopted to reduce the computational burden.
When the Gaussian kernel is adopted, the mechanism is related
to the well-developed scale-space theory [32], [33]. The over-
smoothed kernel density is essentially a Gaussian smoothed ver-
sion of the true density, obtained via convolution with an extra
Gaussian kernel. The key idea of linear Gaussian scale space is
blurring the original function f(x) with a Gaussian kernel A of
bandwidth h

fon(x) = (N = f)(x)

f(x —x*)dx*.

S S P
J@oand | TP o
)

frn,a(x) becomes smooth and represents a coarser property of
f(x) when the bandwidth increases.

We note that, in the statistics literature, Chaudhuri and
Marron [32] have proposed an algorithm SiZer to explore
the significant modes in an estimated curve across multiple
scales. The proposed annealed MS also relates the well known
graduated nonconvexity (GNC) algorithm [34]. GNC provides
a better solution by finding a set of minima along a sequence
of smoothed energy functions, starting from a convex energy
and progressing towards the original energy function. In com-
puter vision, a similar strategy, termed variable-bandwidth
density-based fusion (VBDF), has also been adopted to find
the most significant mode of a density function in the context
of information fusion for multiple motion estimation [35].
However, there are no theoretical details given in [35]. More-
over, VBDF was initially proposed for the topic of information
fusion. To our knowledge, our work is the first to apply it in
a very different—tracking/localization—context. We indepen-
dently develop annealed MS mainly inspired by simulated
annealing and annealed importance sampling. We have shown
a strong connection between annealed MS and these annealing
techniques. Theoretical justification is also given to show why
annealed MS works. Furthermore, we use it in a novel way to
solve some problems in robust visual localization and tracking.

B. Numerical Examples

One-Dimensional Example: Fig. 1 shows a simple 1-D ex-
ample on the galaxy data [11]. Because of the density esti-
mator’s uni-modal property at a large bandwidth (hjy), the start
position at ks has no affect on the final convergence. Fig. 1
shows that the global maximum is successfully located with a
rough seven-step annealing schedule. For this particular case,
it turns out that only two steps are needed to locate the global
mode.
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2-D Example: For this example, the data are drawn from a
Gaussian mixture 0.1-N([-1,0] ", 0.131)4+0.2-N([1,2] T, T)+
0.7-N([1,-2] ", 1), where N (u, £) is a Gaussian distribution
with mean g and covariance ¥, and I is an identity matrix.

A four-step annealed MS  with  bandwidths
{2,1.02,0.66,0.45} is used to locate the global mode.
Fig. 3 depicts the annealing process. Again, due to the
uni-modal property, no matter where annealed MS starts, the
global mode is always obtained eventually. A video sequence
(GMM2D.avi)8 is also generated to show the mode evolution
process more elaborately.

For these two examples, we do not assume any prior informa-
tion about the structure of the data. The only information needed
is the approximate range of the data, which is usually available.

IV. FAST MEAN SHIFT

Generally, searching across multiple bandwidths of annealed
MS could increase computational requirements. It is imperative
that the computational complexity is minimal in real-time appli-
cations, such as visual tracking. We introduce a novel procedure
in this section.

A. Adaptive Over-Relaxed MS

The following two theorems form the basis of the adaptive
over-relaxed MS algorithm.

Theorem 4.1 [Cheng [9]]: Mean shift with kernel G( ) finds
the modes of the density estimate with kernel K ( - ),i.e., fx(-),
where K ( -) is the shadow of the kernel G( - ).

With the analysis in Section II, Theorem 4.1 is evident.

Theorem 4.2 [Fashing and Tomasi [11]]: Mean shift with
kernel K( -) is a quadratic bound optimization over a density
estimate with a continuous shadow of K ( -).

These two theorems show that MS is actually a bound
maximization. One step of the MS procedure of (6) finds the
exact maximum of the lower bound of the objective function
fx(x(®)), where & = 1,2,..., denotes the iteration index.
From (3), we have mg(x) o Vfx(x)/fa(x),, which means
that MS is a gradient ascent algorithm with adaptive step
size. Hence, its convergence rate is better than conventional
fixed-step gradient algorithms and no step-size parameters need
to be tuned. As we will see, however, from the viewpoint of
bound optimization, the learning rate can be over-relaxed to
make its convergence faster. The following theorem shows the
asymptotic convergence property of MS.

Theorem 4.3: Generally, the asymptotic convergence rate of
MS is linear. Therefore, it is slow to converge. Its asymptotic
convergence rate depends on the value

x*—x; 2)
)

2 E?:l(x* - Xi)ZT (
ﬁ n x*—x;
>im19 (H TR
where r(z) = —¢'(z), ie., g(-) is the shadow of the pro-
file 7( - ). x* is the local maximum/fixed point. The smaller the
value, the faster MS converges.

8The videos mentioned in this paper can be accessed at http:/www.cs.ade-
laide.edu.au/~vision/demo/index.html.
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Gaussian kemel, bandwidth:2

Density estimate

Gaussian kernel, bandwidth:0.66316
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Gaussian kemnel, bandwidth:1.0184

Density estimate

Gaussian kemnel, bandwidth:0.45

Density estimate

Fig. 3. Multibandwidth density estimate on 2-D artificial Gaussian mixture data. A four-step annealing schedule is employed to find the global mode. The modes
found by MS across bandwidths are marked with circles. See the sequence GMM2D.avi which demonstrates a slower evolution across bandwidths.

When a piecewise constant profile is employed, the conver-
gence rate is of order 2.

See Appendix for the proof.

In [36], it is proven that the fixed-point iteration algorithm
for Gaussian mixture model can also be interpreted as a special
case of an EM algorithm. The theoretical analysis there should
also apply to mixture of other general kernel models. With these
results, we know that the convergence rate is linear. Therefore,
in most cases, it is very slow unless the mixture components are
well separated.® [26]

From another point of view, bound optimization methods
must usually adopt conservative bounds in order to guarantee
increasing the cost function value at each iteration, leading to
slow convergence [24], [26]. A lot of work has been carried
out to speed up bound optimization methods, especially for the
EM algorithm due to its popularity [25]. Recently, in [26], it
was shown that by over-relaxing the step size, acceleration can
be achieved. Denote the bound function as p(x, x(*)), then the
over-relaxed bound optimization iteration is given by

xFHD = x(0) 4 3 [arg max p(x, x()) - X(K)} - ®

Clearly, when the learning rate § = 1, over-relaxed optimiza-
tion reduces to the standard bound optimization algorithm. It is
easily seen that when 3 > 1 acceleration is realized. Neverthe-
less, by simply setting ( to a fixed value, no convergence is se-
cured and it seems quite difficult, if not impossible, to obtain the
optimal value for 3. Xu proves that in the case of the Gaussian
mixture model parameter estimation with EM, convergence can
be guaranteed using this method when we are close to a local

9In this case, the convergence rate is super-linear.

maximum and 0 < [ < 2 [24]. This conclusion is general-
ized to the case of general bound optimization methods in [26].
Based on this important proposition, a simple adaptive over-re-
laxed bound optimization is readily available: The learning rate
[ can be adjusted by evaluating the cost function. If one ob-
serves that, for some 8 > 1, the cost function value worsens
(becomes smaller), then § has been set too large and needs to
be reduced. Simply setting 3 = 1 immediately, convergence can
still be achieved. By regarding MS as a special case of bound op-
timization, these theoretical conclusions also apply to MS.

The accelerated MS algorithm obtained in this way is shown
in Fig. 4. One can easily check that the following relation holds
(up to a translation and a scale factor):

Fre (X(n-}—l)) - (X(n-}—l)’x(n-{—l)) > ) (X(n-i—l),x(n))
> ) (Xm’x(n)) = fx (x(m) ,

Note that, in the above analysis, we do not take the MS with
a weight function into consideration, but the accelerated algo-
rithm also applies for the weighted case, because the two the-
orems concerned are derived from the weighted MS [9], [11].
The only overhead is the evaluation of the cost function. How-
ever, we will see that for the (truncated) Gaussian kernel, its spe-
cial structure means that computing the MS iteration with (6)
also results in evaluation of the cost function fr(x). Because
the shadow of the Gaussian kernel is itself, we have fx(x) =
fa(x). The following theorem tells us that the Gaussian kernel
and its truncated version are the only kernels that have this prop-
erty.

Theorem 4.4 [Cheng [9]]: The only kernels that are their own
shadows are the Gaussian kernel and its truncated version.
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1) Initialisation:
Set iteration index x = 1, learning rate 3 = 1, and step
parameter o > 1.
2) Iterate until convergence condition is met:
a) Calculate X(*1t1) with Equation (6).
Calculate mean shift mq(x(51t1)) = K(+1) _x(x),
b) x("+1) — x(") + :B . mG(x(K"'l)).
) if fr(x+D) > fie(x*)),
Accept x(*t1) and =« - 3;
else
Reject x(vH1) x(s+1) — (5+1) ‘and g = 1.
d) Set k =k + 1. Start a new iteration.

Fig. 4. Over-relaxed adaptive MS algorithm.

The proof is straightforward. We have g(z) = —k'(z) =
k(x) and k(- ) also must satisfy the conditions being a kernel.
Then taking the integral of both sides leads to the conclusion
that k(- ) is the Gaussian kernel. If discontinuities are allowed
in k( - ), it can also be the truncated Gaussian kernel.

A question naturally arises, what if a kernel other than
Gaussian, e.g., Epanechnikov kernel, is adopted?A The observa-
tion that we can reliably judge the behavior of fx (x) through
the estimate fg(x) is only satisfied when these two kernel
functions generate density estimates of the same degree of
smoothness. For different kernels, as long as the bandwidths
are adjusted accordingly, all of the kernels are asymptoti-
cally equivalent under the AMISE error criterion. Therefore,
the kernel type is not of importance in MS analysis but the
bandwidth plays a critical role. For a non-Gaussian kernel,
the shadow is different from itself (fx(x) # fa(x)). The
smoothness of two kernel density estimates with the same
bandwidth but different kernels might also be quite different.
As a consequence, usually we cannot reuse the density fg(x)
cglculated in (6) and an extra evaluation of the cost function
fx (x) needs to be made.

In fact, if the bandwidths of two different kernels h 4, hp sat-
isfy

ha  bo,a
hp b0,

where 0g is a kernel’s canonical bandwidth, then the density
estimates based on these two kernels have the same degree of
smoothness [20]. Utilizing this knowledge, if the canonical
bandwidths associated with a kernel and its shadow kernel are,
in practice, comparable, we still can reuse fg(x). Although no
details on this topic are presented in this paper, we have val-
idated this conclusion with numerical experiments. However,
one should be aware that the measurement of comparable is
application dependent.

B. Numerical Experiments

Mode Seeking: We compare the performance of the proposed
accelerated MS algorithm with the standard MS algorithm on
both synthetic data and real application data sets. Note that re-
jected iterations are also counted for the accelerated MS algo-
rithm.

The test data sets we use in the experiment are described as
follows.
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TABLE I
COMPARISON OF NUMBER OF ITERATIONS FOR CONVERGENCE. THE INITIAL
LOCATION FOR EACH RUN IS SHOWN IN THE SECOND COLUMN

number of iterations

daza set initial fast mean shift mean shift
—-0.8 13 51
data set #1 1.5 16 77
3.6 11 33
9800 12 49
data set #2 —1005 8 15
3200 10 31
(—5,20) 12 34
data set #3  (—10, 16) 11 29
(20, 10) 13 35
(1,-1.4) 29 119
data set #4  (1.5,0.4) 17 65
(0.3,0.3) 12 36

1) Data set #1 (1-D synthetic data). A total of 1000 data
points are drawn with equal probability from four normals:
N(3,1),N(1,1),N(0,1), and N (=2, 1).

2) Data set #2 1-D galaxy velocity data (also used in [11]).

3) Data set #3 (2-D synthetic data). A total of 1050
bivariate data points are drawn with equal proba-

— E K 4K
bility from three normals: N ([ 7], [_‘):5 54;]),
0, .85 6.5 12, (144 —-45
NMlpphlgs g5l adNshl 5 561

4) Data set #4 (2-D vowel data). This data set contains 640
time series of 12D LPC cepstrum coefficients taken from
nine male speakers [37]. We use the first two dimension
vectors for tests. In all the tests, we usel® o = 1.25 and the
convergence tolerance

oo SR = fre(x)
fie(x)

Unless otherwise specified, the Gaussian kernel is adopted.
The resulting mode locations found by the two algorithms are
so close that the difference is negligible. We run the comparison
with three arbitrarily selected start points on each data set. The
experimental results are reported in Table I. The proposed algo-
rithm is significantly more efficient than the standard MS. The
evaluation results are promising: Speedup by a factor of about
2-5 can be achieved in these evaluations. We have also devel-
oped an accelerated MS tracker, which outperforms the conven-
tional MS tracker [38].

The accelerated MS’s performance with fewer convergence
iterations has proven commensurate with its standard counter-
part. In theory when the start point is extremely close to the local
maximum, the rejection in the proposed accelerated MS proce-
dure might happen frequently, resulting in a resource waste. In
practice, these cases are rare. Moreover one can devise smarter
step-size adjustment strategies to cope with this extreme case.

In Fig. 5, we have depicted the paths of the two methods
and the contours of the density function as well as the learning
curves for different runs and data sets. The standard MS algo-
rithm takes many steps to reach the fixed point while the accel-
erated MS algorithm has a much better overall performance.

Data Clustering: In the second experiment, we compare the
performance of three algorithms (stand MS, accelerated MS,

= 0.001.

101t is possible to adapt the value of o for better performance.
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Fig. 5. Fast MS iteration versus the standard MS procedure. The four cases correspond to Run #1 for data set #3; Run #1, #2, and #3 for data set #4, respectively.
(a)—(d) Zoomed mode seeking trajectories (squares: fast MS; circles: standard MS). (e)—(h) Learning rate curves of (a)—(d).

TABLE II
COMPARISON OF CPU TIME (IN SECONDS) FOR DATA CLUSTERING.
THE STANDARD DEVIATION IS SHOWN IN THE BRACKET

data set CPU time (std.)

mean shift fast mean shift quasi-Newton
data set #5 | 3.250 (0.008)  1.251 (0.003) 1.258 (0.004)
data set #6 | 71.12 (0.82)  24.62 (0.49) 24.40 (0.49)
data set #7 | 293.13 (6.91)  159.09 (4.28) 159.71 (3.51)
data set #8 | 113.77 (4.47) 54.13 (2.05) 52.56 (2.66)

and quasi-Newton [23], [39]) for clustering. The L-BFGS al-
gorithm [40] is adopted for implementing the quasi-Newton al-
gorithm. The clustering is achieved by running the MS mode
seeking starting from each data point. Also, the Gaussian kernel
is used and the step parameter « is set to 1.25.

The test data sets are as follows.

1) Data set #5 (2-D synthetic data). A total of 1000 data points
are drawn from a Gaussian mixture model which is de-
scribed in Section III-B (Fig. 3).

2) Data set #6 (Corel image features). The original data set
contains 68 040 9D vectors (color moments) [37]. We sub-
sample 4000 data points from it and only take the first two
dimensions.

3) Data set #7 and #8 are two images with size 120 x 80 and
60 x 90, respectively. Therefore, there are totally 9600
and 5400 data points. Channels R and G are used for
clustering.

In this experiment, all codes are written in C++ and run on

a PC with Pentium-IV 3.4-GHz CPU, Linux 2.6 OS. We repeat
all the tests 20 times and the average CPU time as well as the
standard deviation is reported in Table II.

In terms of efficiency, the proposed fast MS algorithm is con-
sistently better (around 2-3 times faster) than standard MS and
similar to the quasi-Newton algorithm in these tests. However,
we observe that the fast MS is better than quasi-Newton in the
accuracy of clustering.

!
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Fig. 6. CPU time at various values of «, test on data set (top) #5 and (bottom)
#6. In both cases, & = 1.3 achieves fastest computation.

Itis well known that the quasi-Newton gradient algorithm can
over-shoot!! when the search step is too large. This is potentially
acceptable in generic optimization because the purpose is often
to find any local optimum—not necessarily the nearest one. In
contrast, in clustering, the purpose is to drive each data point to
its nearest mode. It is for this reason that MS is preferred for
clustering such as image segmentation.

Although theoretically fast MS could also over-shoot when «
is large, in both mode-seeking and data-clustering experiments,
fast MS with v = 1.25 obtains results identical to its stan-
dard counterpart. We deliberately set a very large to test the
accuracy. In Fig. 7, we show the clustering results on data set
#5. All three algorithms find the same modes but quasi-Newton
has many initial points converging to the wrong modes. Hence,
while quasi-Newton might be a good choice for some optimiza-
tion tasks like object tracking [39], it is less useful for clustering.

A question on the fast MS is how to determine the precise
« value. To examine this, we test different values of o on two

1By over-shooting, we mean the algorithm converges to a local optimum
which is not the nearest one to the initial position.
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Fig. 7. Clustering results of (a) stand MS and fast MS with «« = 1.25; (b) quasi-Newton; (c) fast MS with o« = 2.5. 32 out of 1000 points are wrongly clustered
for the quasi-Newton method; three for the fast MS with o = 2.5 Cluster centers are marked with thick squares.

datasets. Fig. 6 shows how « can change the performance of
the algorithm. Empirically, we see that in a certain « range, the
algorithm is not sensitive to change in ««. However, in Fig. 7, we
see that the larger the a, the more likely it is to overshoot. For
this reason, we choose v = 1.25 in this work.12

V. ANNEALED MS-BASED VISUAL LOCALIZATION
AND TRACKING

We have proposed a framework for fast global kernel density
mode seeking. In this section, we apply the annealed MS to
visual localization and tracking. In all the localization and
tracking experiments we use RGB color histograms, consisting
of 16 x 16 x 16 bins. The tracking framework presented in
[2] is adopted, but we use an annealing procedure for global
mode seeking. We first briefly review the MS tracker [2] in
Section V-A, followed by the experiments on the proposed
visual localization (Section V-B) and tracking (Section V-C).

A. Implementation

In the experiments, the object is represented by a square re-
gion which is cropped and normalized into a unit circle for the
convenience of derivation [2]. By denoting q as the color his-
togram of the target model, and p(x) as the target candidate
color histogram with the center at x, the (dis-)similarity func-
tion between g and p(x) is written p(x) = p(q, p(x)). Here,
p(+,-) can, for example, be the Bhattacharyya divergence [2],
[41], the Kullback-Leibler (KL) distance [4], [42], or the Ma-
tusita metric [5] as a similarity measurement.!3 Let {y;}?_; be
the pixel positions in the region with the center at x. In order to
make the cost function smooth—otherwise gradient-based MS
optimization cannot be applied—a kernel with profile k(- ) is
employed to assign smaller weights to those pixels farther from
the center, considering the fact that the peripheral pixels are less
reliable. We then build an m-bin color histogram for the target
candidate located at x, p(x) = {p.(x)}i—,, where

) 1 ¢

Pu(x) = Ezk(n}’i“?)‘s((b(Yi) —u)). ©)
=1

12]n [26], «v is set to 1.1 for over-relaxed EM.

I3These three density metrics have been reported in tracking literature. Other
metrics might also be used.

The constant ¢ guarantees p(x) a normalized density. §( -) is
the Kronecker function and function b( - ) maps a normalized
pixel y; to the histogram bin associated with the color of y;.
The same strategy is used to obtain the target model q.

Given an initial position x*, the problem of localiza-
tion/tracking is to estimate a best displacement Ax such that
the measurement p(x* + Ax) at the new location best matches
the target q, i.e.,

AX* = arg HAliIl (4, p(xX* + Ax))

where p(-, -) is large when the two distributions are similar (e.g.,

the KL or Matusita distance); otherwise (e.g., Bhattacharyya
distance)

Ax* = arg max p(4, p(x* + Ax)). (10)

By Taylor expanding p(-,-) at the start position x* and

keeping only the linear item (first-order Taylor approximation),

the optimization problem (10) can be resolved by an efficient
MS procedure. See [2] and [5] for more details.

B. Visual Localization

Standard MS is used for tracking motions with small dis-
placements due to its lack of global mode seeking capability,
and is not used for localization. Armed with annealed MS, it is
possible to locate a target no matter from which initial position
the MS localizer starts, given the target template.

In our experiments, the annealed MS localizer starts at arbi-
trarily selected positions. All successfully locate the target. A
total of six runs for each example are marked in Fig. 8. Four
objects are located successfully in different environments. For
the first example, the bandwidths are {60, 40,20, 10}. We plot
the cost function values for this example in Fig. 9 to illustrate
how annealed MS works in this case. The influence of the most
significant peak is introduced gradually, which guides search to-
wards the global mode. One can see that even at h; = 20, there
are plenty of local modes which can easily make the search stop
prematurely. At hg = 10, there are three major modes corre-
sponding to the three faces in the figure. Note that MS does not
converge to the exact modes in Fig. 9 due to the Taylor approxi-
mation [2]. However, it converges to a position close to the true
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Fig. 8. We locate (left top) a specified human face beside two spurious faces, (right top) the STARBUCKS logo, (left bottom) a CD, and (right bottom) a book cover
within cluttered backgrounds. The annealed MS is started at arbitrarily selected positions. Dashed lines indicate the MS searching trajectories for each run. Dots
indicate the start and convergence positions of MS foreach bandwidth. See the videos localizer{1,2,3,4}.avi for an intuitive demonstration of the annealing

convergence processes.

Gaussian kernel, bandwidth:60 Gaussian kemel, bandwidth:40

Gaussian kernel, bandwidih:20 Gaussian kernel, bandwidth:10

Fig. 9. Cost functions (corresponding to the first example in Fig. 8) at different bandwidths: 60, 40, 20, and 10 are plotted as contours of 2-D translations. The

true mode is marked with a square.

mode. For localization and tracking, this accuracy loss is negli-
gible. The size of the image in this example is 128 x 96 and the
targetis 10 x 10. To locate the target, an exhaustive search needs
11 543 evaluations of the distance between the candidate and the
target. Comparatively an average 35.5 iterations is needed for
annealed MS.

The other three examples begin at hy = 80 and a five-step
annealing guarantees a global mode in these cases. For the CD
and book cover localization, we take the template models from
other images undergoing large geometric and slight illumina-
tion changes. The success shows that the color histogram is a
relatively robust feature. It is straightforward to include other
features, e.g., a histogram of intensity gradient orientation, to
make the localizer more robust. Without the annealing proce-
dure, most runs reach local maxima—only when the initial po-
sitions are located in the small area close to the global mode can
standard MS find the target. When no prior knowledge is avail-
able about the global maximum we are seeking, it is always ben-
eficial to employ a relatively broad bandwidth MS procedure,
which can provide a coarse location of the global mode. In the
experiments here, although we do not carefully design the an-
nealing schedule, global modes are always found.

C. Visual Tracking

Tracking algorithms typically have several drawbacks.
1) They work well only when the displacements between
consecutive frames are relatively small. 2) Usually, they cannot
self-start. 3) They are not robust to occlusions and are unable
to recover from momentary tracking failures. Standard MS
trackers are no exception. Annealed MS alleviates these weak-
nesses by incorporating an efficient bottom-up localization
functionality. To introduce a detector/localizer into visual
tracking is generally helpful. The detection/localization process
is robust to momentary tracking failures because it does not
rely on any temporal information. For example, Okuma et al.
combine an AdaBoost detector into mixture particle filters to
track a varying number of nonrigid objects [43]. AdaBoost
helps to generate proposal distributions for particle filters.
Better performances have been observed. The single scale MS
approach assumes that the initialization point for the tracker
(which is typically the mode from the previous frame) falls
within the basin of attraction of the desired mode. The limits
of the basin of attraction are, however, determined by the
bandwidth of the kernel used, which is in turn determined by
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Fig. 10. Face-tracking sequence with (top) standard MS and (bottom) annealed MS. Frames #5, #14, #22, and #25 are shown. The object is accurately detected
and tracked by annealed MS despite large displacements. In contrast, MS is more likely to become trapped into local modes and gives inaccurate results (# 5, #14,

and #22) or even fails completely (#25). See the video facetracker.avi for details.

the scale of the object being tracked. There is little reason,
however, to assume that there is any relationship between the
scale of the object being tracked and the amount that it might
move between frames.

Face Tracking Example: The tracked target moves fast,
leading to large displacements between consecutive frames. An
annealing schedule of {60, 30, 18} is used by annealed MS. The
annealed MS tracker is automatically started by a localization
process, while the MS tracker is manually started. As in MS
tracking, annealed MS also starts at the position of the previous
frame. Unless otherwise noted, in all the tracking experiments,
the convergence tolerance is the £»-norm distance between two
iterations, with e = 0.2 pixels. Fig. 10 summarizes the tracking
results. The annealed MS tracker is more robust and accurate
than the standard MS tracker. When the displacement is large,
the standard MS tracker is easily trapped in spurious modes.

Implementation Issues: MS might get stuck at false modes
caused by the discrete nature of the color values of pixels. Wang
and Suter observe this phenomenon in grey image histogram
clustering [44]. Their analysis also applies to color image his-
tograms. We avoid this problem by imposing a ceiling on the
MS step [mg(x)] [see (5)]. This modification increases the
size of the shift steps, hence leading to quicker convergence.
The drawback is that it might lose accuracy. We use the orig-
inal step by (5) at the last bandwidth h(. Because we are only
interested in the last convergence position, accuracy is retained.
Both in localization and tracking, it has been observed that this
simple treatment results in satisfactory convergence without ac-
curacy loss. We compare the number of convergence iterations
per frame for the face tracking video in Fig. 11.14 One can see
that in this example their convergence speeds are similar (note
that the fast MS algorithm is not implemented for both trackers).
In many frames, annealed MS is even faster. The is because
MS at the first few bandwidths (has..1) can move close to the
mode quickly with the above implementation. A recent paper
[45] suggests that, besides avoiding local optima, simulated an-
nealing also speeds up convergence to the optimum. Our obser-

140nly frames #1 . . ., 22 are compared because from # 23 on, the MS tracker
fails. For annealed MS, we count the sum of iterations at each bandwidth.
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Fig. 11. Comparison of the number of iterations per frame: MS (marked with
circles) versus annealed MS (marked with squares) for the face tracking se-
quence.

vation coincides with this finding. However, larger bandwidths
of annealed MS mean that slightly more computation might be
needed to build the histograms. We also have implemented the
proposed accelerated MS algorithm (Section IV) into tracking,
and a considerable speedup has been achieved [38].

The second issue is the design of the annealing schedule.
As in simulated annealing, the slower the annealing schedule,
the more likely the algorithm is to find an optimal solution.
However, a slow annealing procedure incurs heavy computa-
tional costs. Therefore, choosing a proper cooling schedule is
of considerable value. At this stage, we determine the annealing
schedule empirically.

Walker Tracking Example: We track a walker in an office en-
vironment. In this sequence, the tracked person disappears for
several frames. The annealed MS tracker automatically initial-
izes when the tracked walker comes back to the scene. In con-
trast, the MS tracker fails to recover. An annealing schedule of
{70, 30,13} is used by annealed MS in this example. See Fig. 12
for details.

Basketball Tracking Example: This example again shows the
annealed MS tracker’s ability to recover from temporal failures.
The original sequence is down sampled by a factor of 2 to make
the target’s displacements larger. The MS tracker fails as early
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Fig. 12. Walker tracking results with (top) MS and (bottom) annealed MS. Frames #17, #19, #58, and #62 are shown. The annealed MS tracker successfully
recovers from complete occlusion in #9 ~ 16 and #40 ~ 58. MS cannot recover from the second occlusion. See office.avi for details.

Fig. 14. Weetbix box tracking results with annealed MS. Frames #2, #9, and #17 are shown. See weetbixbox.avi for details.

as at #6. Therefore, we only show the tracking results of an-
nealed MS in Fig. 13. annealed MS tracks across bandwidths
{30, 15, 8} and works successfully. At #18, annealed MS loses
the target due to illumination changes. However, it recovers im-
mediately at #19. It drifts slightly because of the basket’s occlu-
sions at #20 and recovers at the next frame. Again, we observe
annealed MS tracking is efficient: An average of only 8.1 itera-
tions per frame is needed.

Weetbix Box Tracking Example: We track a part of a weetbix
box, which is recorded by a very unstable camera. Annealed
MS again shows its robustness over the MS tracker. Here, the
annealing schedule is {100, 30, 20}. The conventional MS loses
the target very early because of the drastic camera motion, while
the annealed MS achieves significantly better performance. The
tracking results are shown in Fig. 14.

VI. CONCLUSION AND DISCUSSION

When the displacement between neighboring video frames
is large compared with the scale of the adopted kernel, MS
tracking is susceptible to failure. In this paper, we addressed
this shortcoming with the introduction of a new global mode

seeking MS, termed annealed MS. Improvements over standard
MS were obtained when the density has multiple peaked modes.
Promising results were obtained in both tracking and localiza-
tion applications, even with the most elementary of annealing
schedules.

An adaptive over-relaxed MS was also proposed to accelerate
convergence. Compared with the standard MS algorithm, the
number of iterations to convergence was almost always signif-
icantly decreased. The method provides an additional speedup
to existing techniques such as LSH [1] and fast Gaussian trans-
form [7], [31].

Visual localization and tracking are key problems in computer
vision. Considerable efforts have been expended in this area
due to their utility in applications such as visual surveillance,
intelligent vision-based human computer interaction and smart
vehicle driving systems. Future work will explore the effects
of annealing schedule design on the localization and tracking
performances, and the use of other discriminative features (rather
than simple color histograms) for better localization and tracking
performance. Consideration will also be given to exploring the
application of the proposed method to other computer vision
problems.
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APPENDIX

We prove Theorem 4.3 in this Appendix. The MS procedure
can be considered as a fixed-point iteration which has a general
form x = S(x) - S(-) is the mapping function, which is in the
format of (6) for MS. We confine ourself to the univariate case
here, i.e., x € R, because of the following:

— it is straightforward to generalize the following analysis to

the multivariate case;

— under the isotropic bandwidth assumption (H = h2I), the
multivariate case can be decomposed into multiple inde-
pendent univariate cases.

Let the local maximum be x*. x* is the fixed point: x* = S(x*).
We have x("t1) — x* ~ V§(x*)(x®) — x*) when x(*+1) is
close to x*. Thus

Hx(n—l—l) —x*

< IVSE) - [|x - x

That is to say, MS is a first-order (linear) algorithm provided
V. S(x*) # 0.15 Therefore, generally, MS’s convergence is slow.
Now let us analyse MS’s asymptotic convergence property.
Since
’)

o xig (|5

Sx) = <= x (1)

i1 g (1P5211°)

and using the equation x* = S(x*), we have

n 2/ x"—x; 2
=) 9 2o (X —%i)%g ( R )
VS(x*)=—-— .
h2 n o, (|12
Zi:l 9 (“ h )

(12)

Because x* is the maximum, we have V2 f (x*) < 0 (for
multivariate x, the Hessian matrix is negative definite or nega-
tive semi-definite). After some manipulation, the following re-
lation holds:

n * 2

X —X;

h
5
=1

Define r(z) = —g’(x), then g( - ) is the shadow of the profile
r(-). We know that r( - ) satisfies all the requirements to be a
profile if r(z) is not always 0, Vz > 0 [9]. We now rewrite (13)

2

h?
i=1

(X* _ xi)Zg/

2

x* —x;
)

n 2

2 *
7z Z(x —x;)%r

i=1

x* —x;

h

2

x* —x;
- 14
3 (14)

n
<>y ‘
=1

The Lh.s. of (14) is a weighted density estimate with non-
negative weights, and it must be non-negative because Vz >
0,7(z) > 0. We have

0<VS(x") < 1.

5)

15 Tt can get higher order convergence when V.S (x*) = 0; [11] also shows
this conclusion from a different view.
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With the fixed-point iteration theorem, it is easy to see that
there is an interval Zs = [x* — 6,x* 4+ 6],6 > 0, such that
the iteration x(**1) = §(x(*)) monotonically converges to the
local maximum x* for every x(0) ¢ Zs. In this case, x* is an
attractive fixed point. Otherwise, if ||V S(x*)|| > 1, the iteration
will not converge to x*. We say that x* is a repelling fixed point
and the iteration exhibits local divergence.

Furthermore, if V.S(x*) # 0, then the convergence is linear
with the value V.S(x*). In other words, the smaller VS (x*)
is, the faster the iteration converges. When the bandwidth h —
+00, VS(x*) — 0. In this case, the convergence is fast (super-
linear).

Alternatively, if V.S(x*) = 0, then the convergence is of
order 2 (quadratic). When the MS procedure employs a piece-
wise constant profile g(-),r(-) = —g¢’(-) = 0 and conse-
quently V.S(x*) = 0. In this case, the convergence rate is of
order 2. This result coincides with Theorem 2 in [11].
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